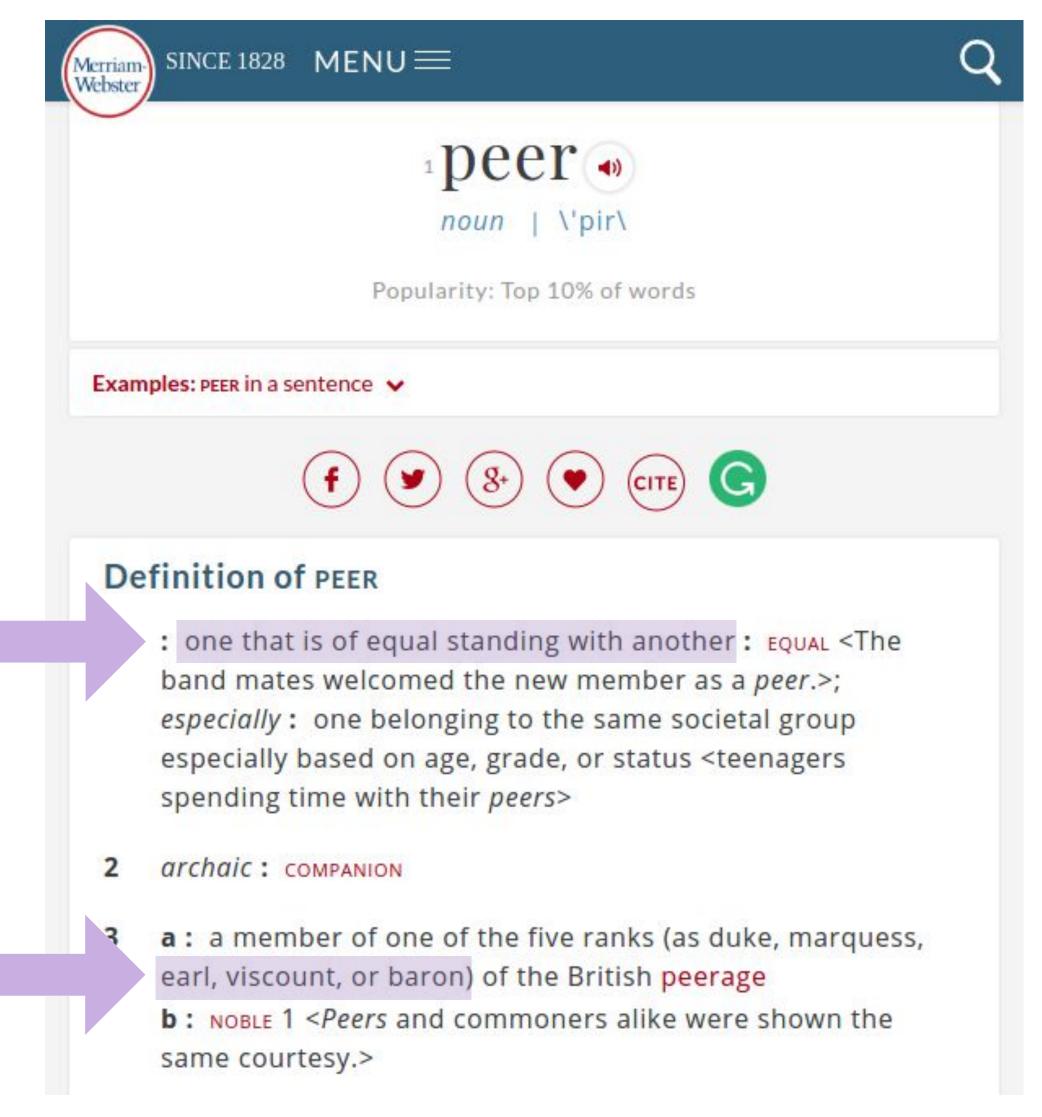
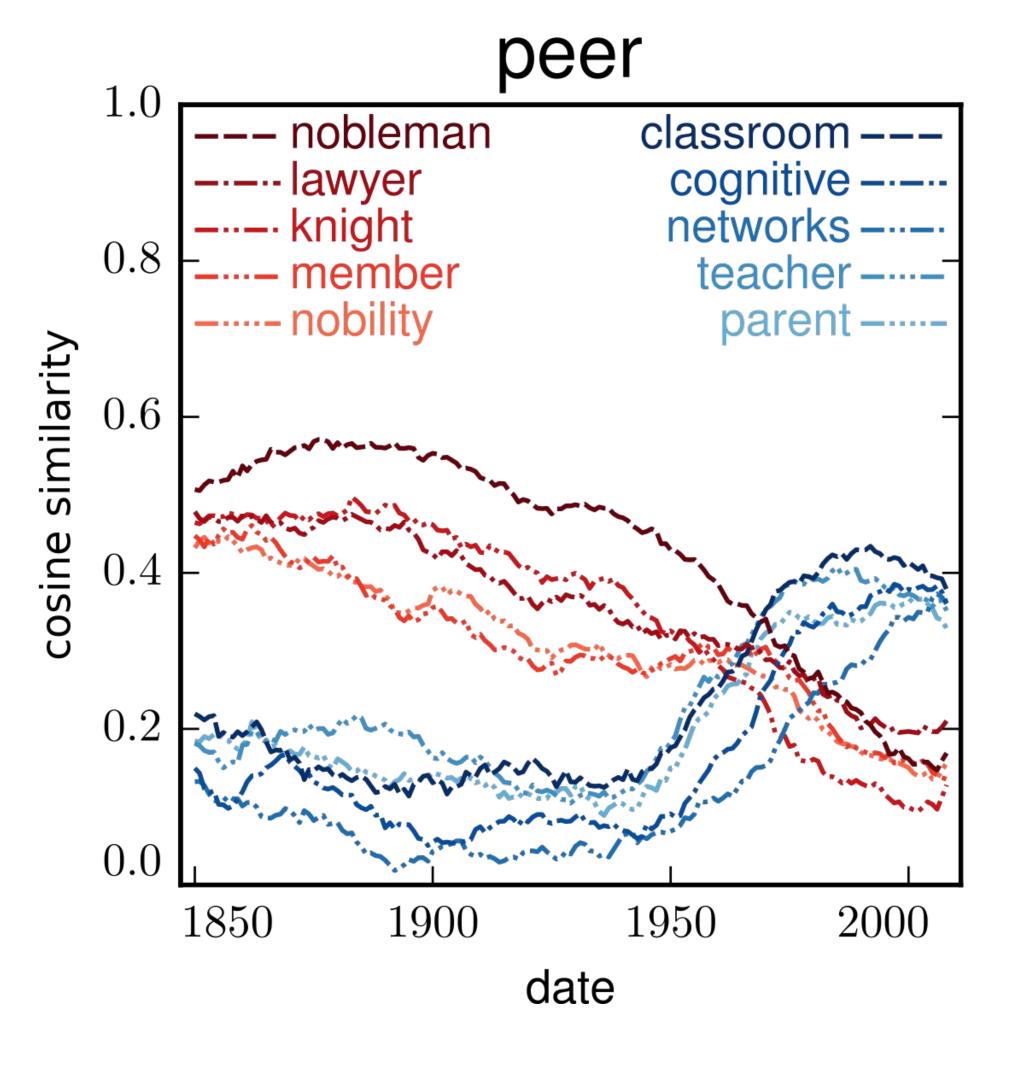
Probabilistic Embedding Models

Robert Bamler, UC Irvine

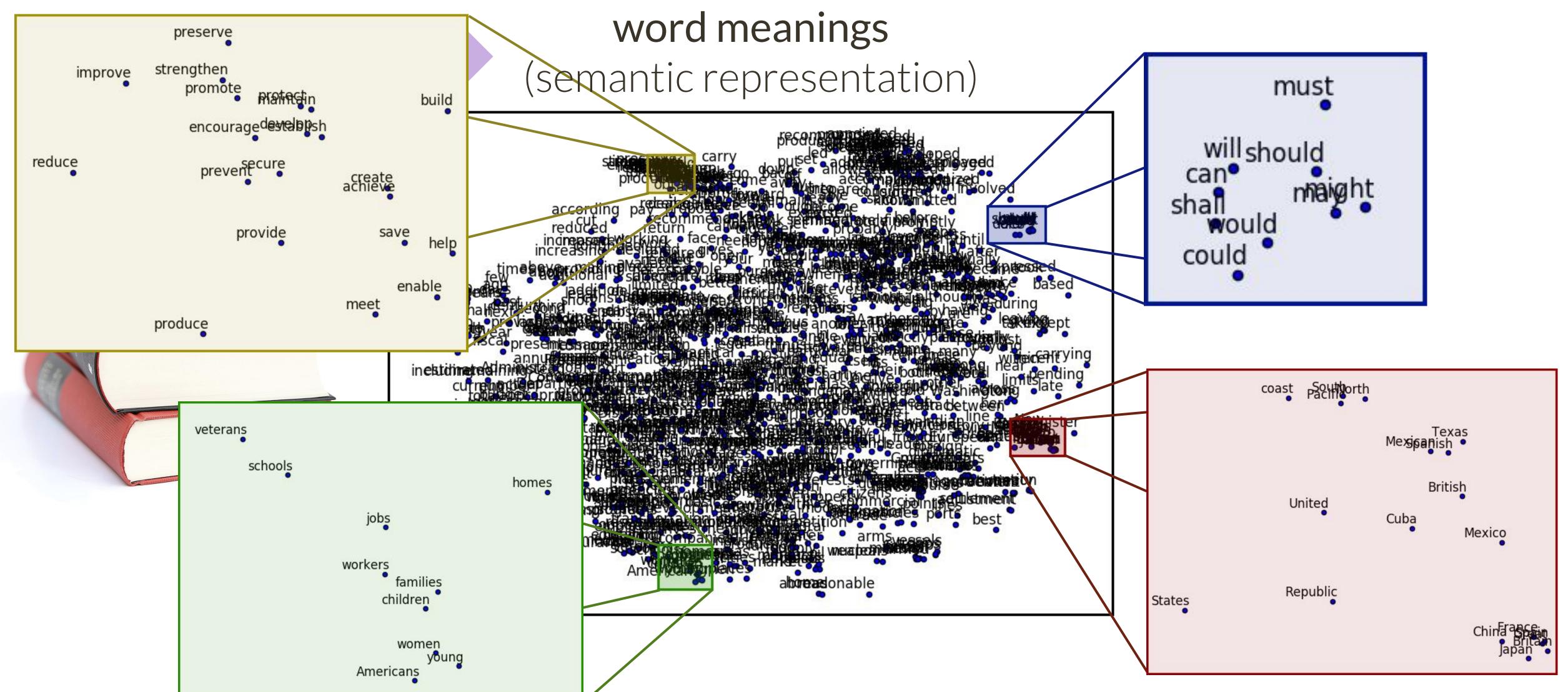
Internal Blockchain Meeting 7 October 2019

Who Are Your Peers?





Word Embeddings



Word Embeddings

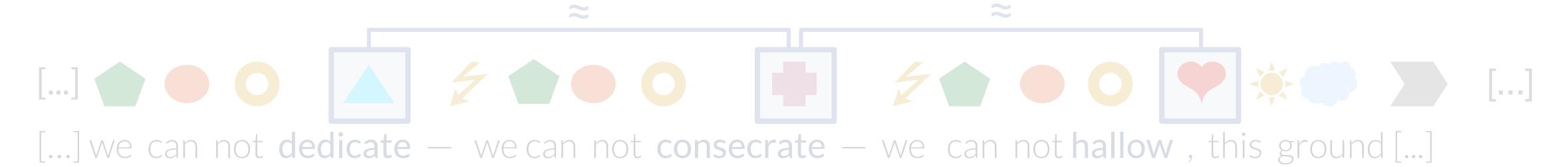
Capture semantic relations:

► Used for transfer learning in natural language processing, e.g., for sentiment analysis:

Distributional Hypothesis

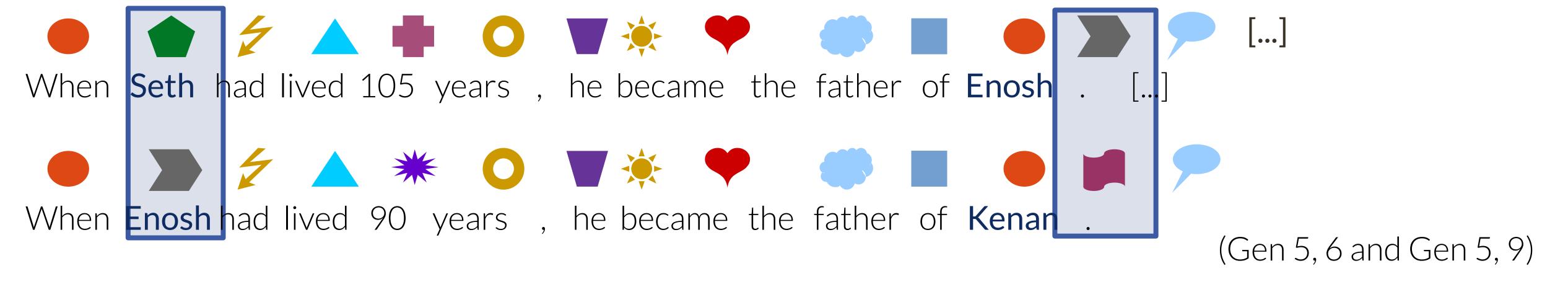
[Rubenstein & Goodenough, 1965; Sahlgren, 2008]

Assumption: Words that appear in similar contexts are similar in meaning.



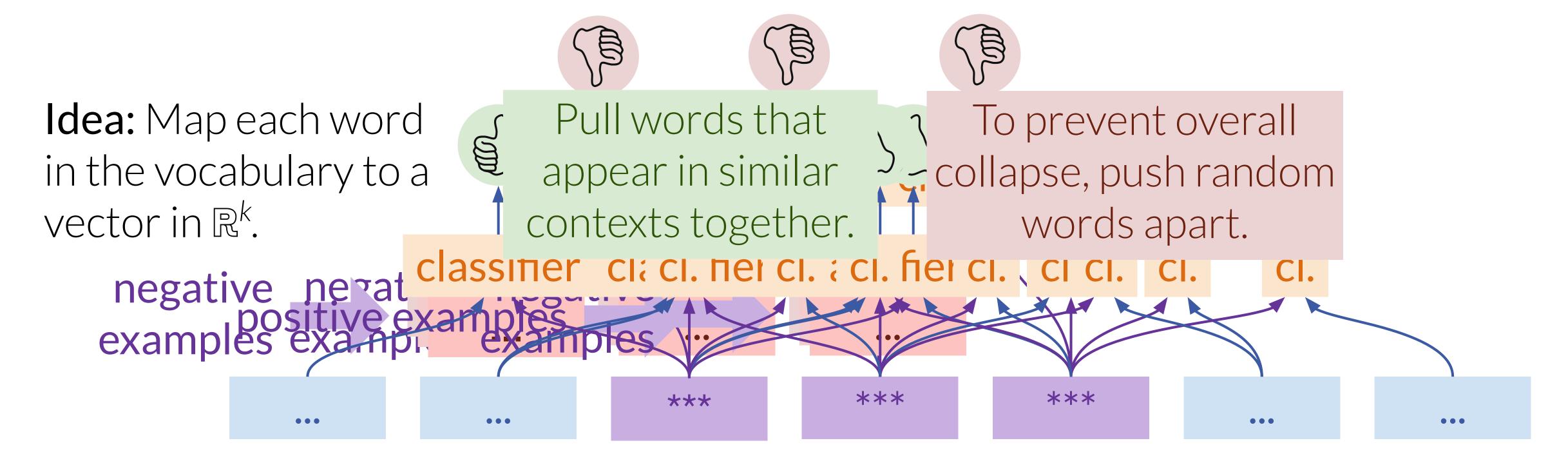
(A. Lincoln, 1863)

Semantic relations between words:



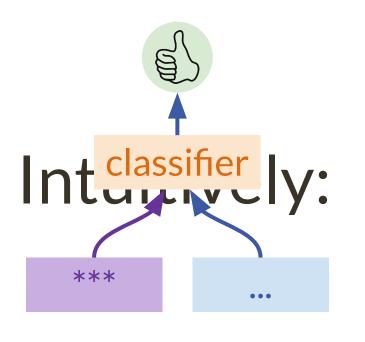
"Neural" Word Embeddings: word2vec

[Mikolov et al., ICLR 2013 & NIPS 2013]



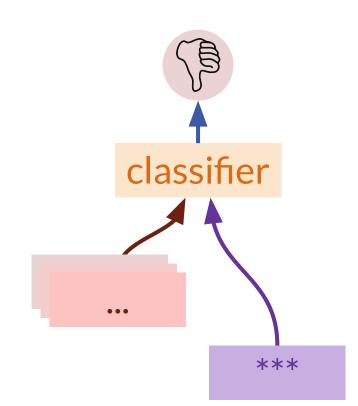
"Neural" Word Embeddings: word2vec

[Mikolov et al., ICLR 2013 & NIPS 2013]



Pull words that appear in similar contexts together.

To prevent overall collapse, push random words apart.



Minimize loss function:
$$\ell = -\sum_{(i,j) \in \text{pos.}} \log \sigma(\mathbf{u}_i^\top \mathbf{v}_j) - \sum_{(i,j) \in \text{neg.}} \log \sigma(-\mathbf{u}_i^\top \mathbf{v}_j)$$

word embedding (vector in \mathbb{R}^k)

context embedding (vector in \mathbb{R}^k)

Our Extension: Dynamic Word Embeddings

[Bamler & Mandt, ICML 2017]

"Computer" in 1961

© 20th century FOX

"Computer" today

Detecting Subtle Changes Over Time

9

[Bamler & Mandt, ICML 2017]

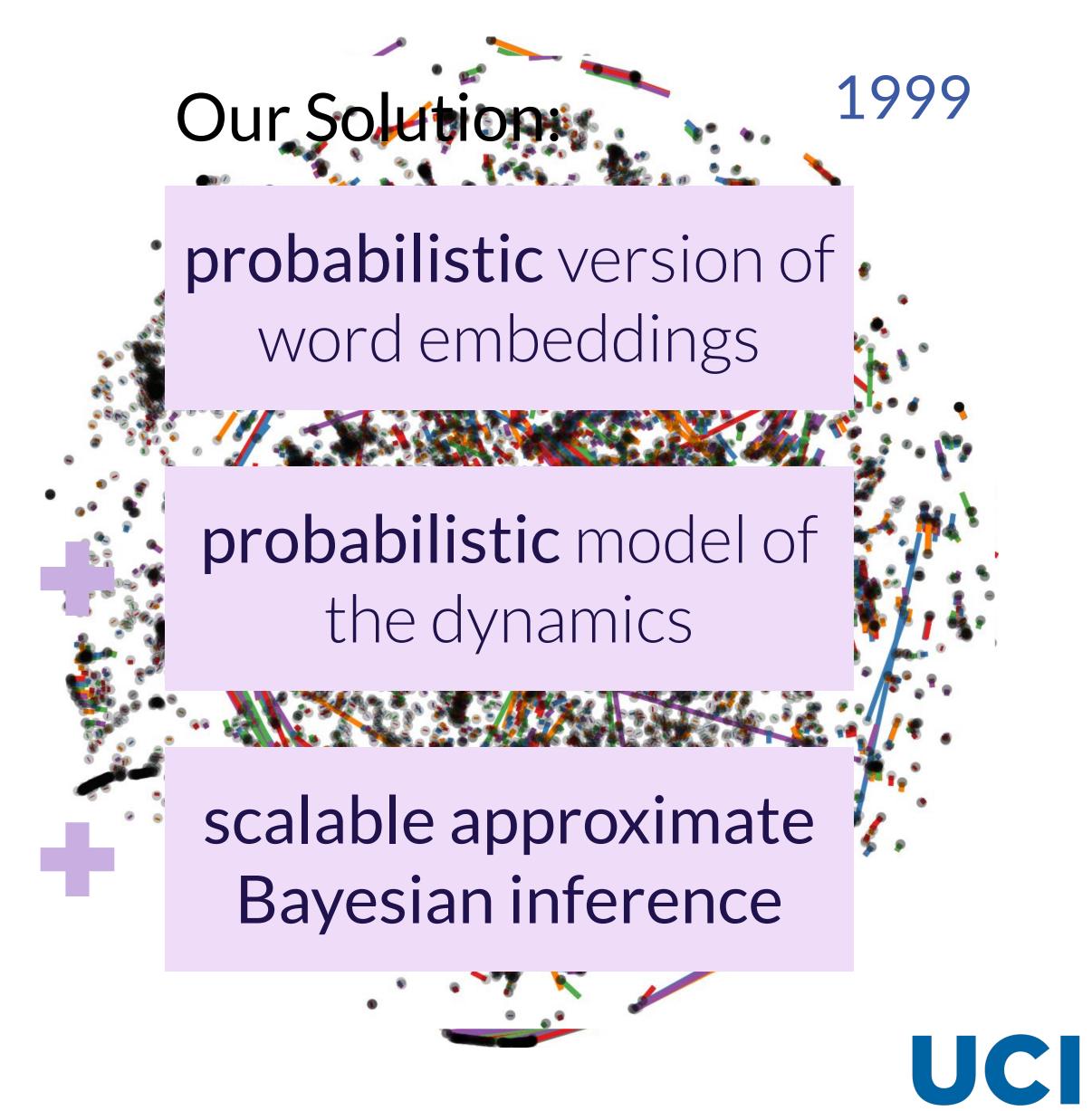
Naive idea:

Fit individual embedding vector for each word and each year.

Problem:

Only few data per word & year.

→ small signal/noise ratio

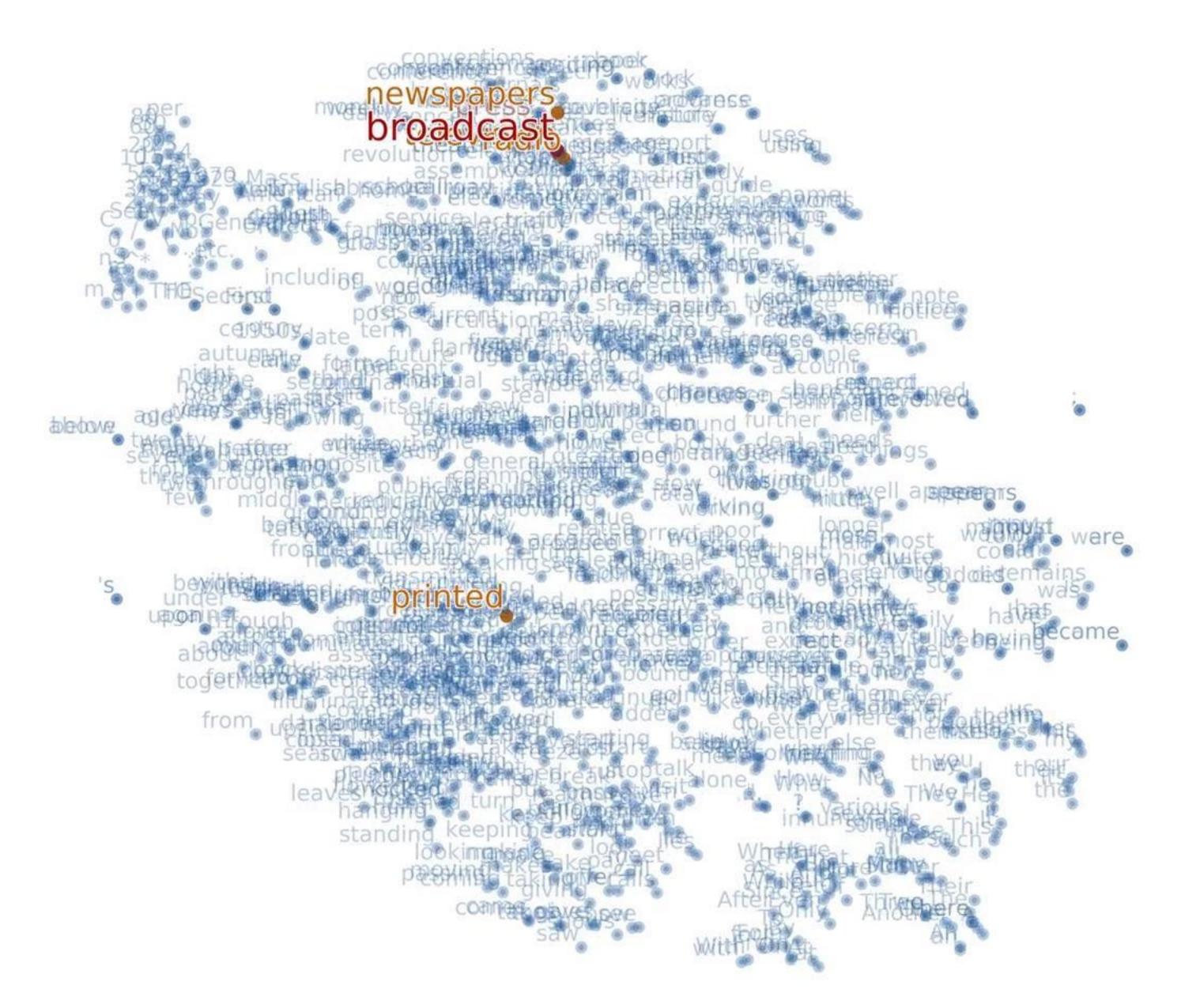


1989

broadcast radio

the exist pers

printed



Bear With Me: Probabilistic Models & Inference

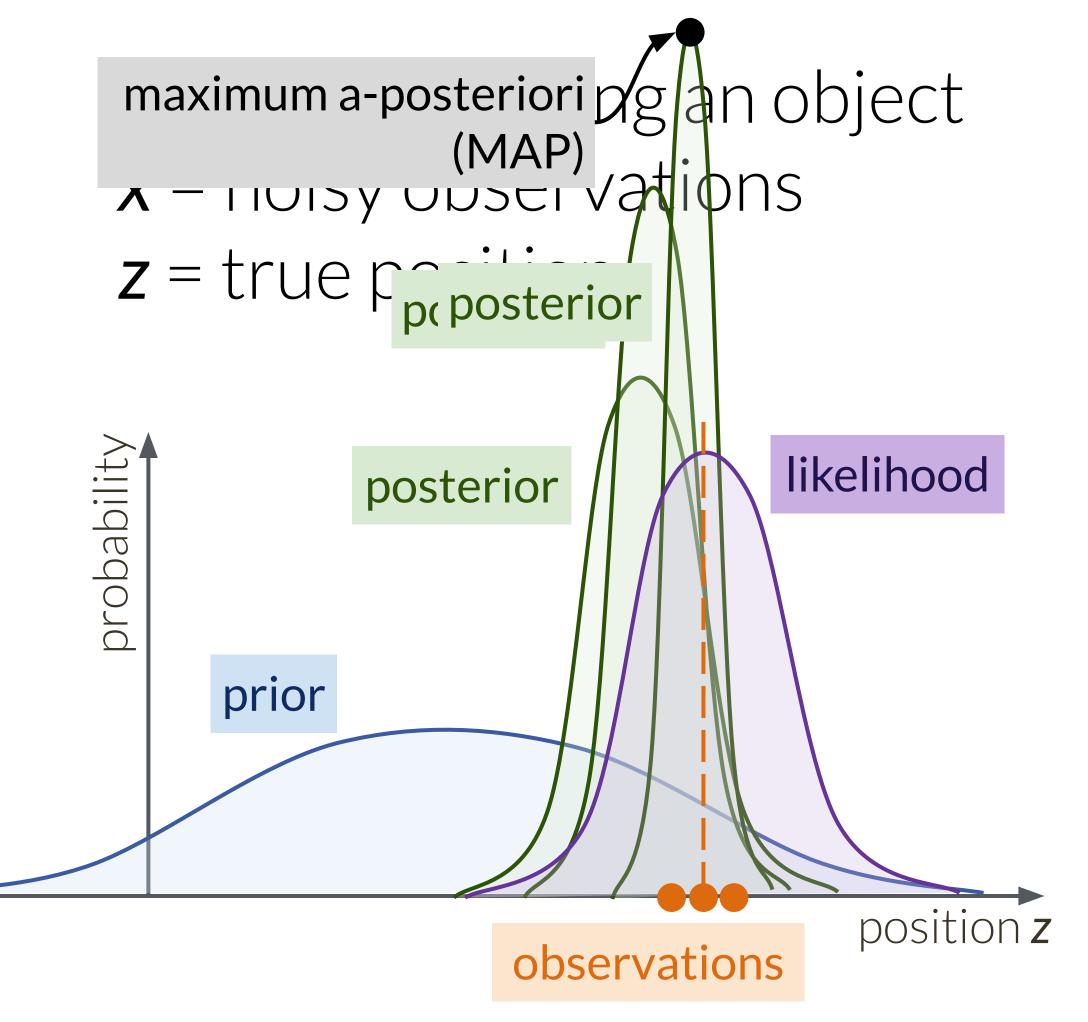
Probabilistic Models & Bayesian Inference

```
Notation: x = observations (data)
z = latent (i.e., unknown)
variables that caused x
```

Probabilistic model: p(x, z) = p(z) p(x|z)prior likelihood

Inference: find posterior $p(z|x) = \frac{p(x,z)}{\int p(x,z) dz}$

probability that latent variables **z** explain the observed data **x**.



Reminder: word2vec minimizes loss $\ell = -\sum_{(i,i) \in \text{pos.}} \log \sigma(u_i^\top v_j) - \sum_{(i,i) \in \text{pos.}} \log \sigma(-u_i^\top v_j)$

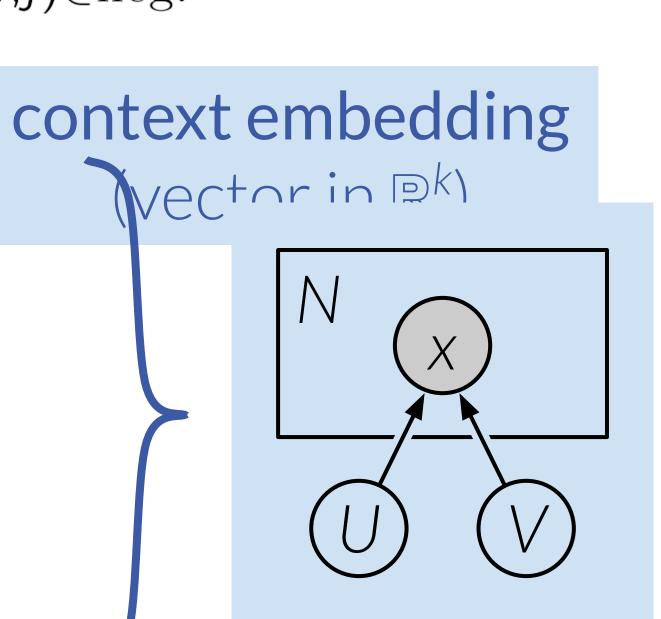
Observation: $\ell = -\log p(x|z)$

word embedding (vector in \mathbb{R}^k)

Generative process:

repeat:

- Draw a random pair of words (i, j) from vocabulary.
- With probability $\sigma(u_i^T v_j)$: mark (i, j) as a positive example; otherwise: mark (i, j) as a negative example.



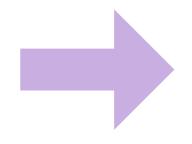
Enough Equations, Back to Pretty Pictures

Nymphenburg Park, Munich #nofilter

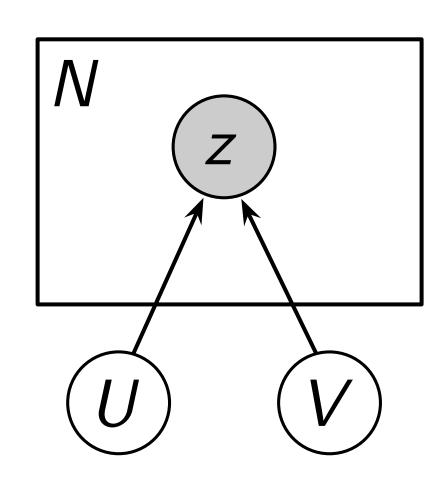
Dynamic Word Embeddings Model

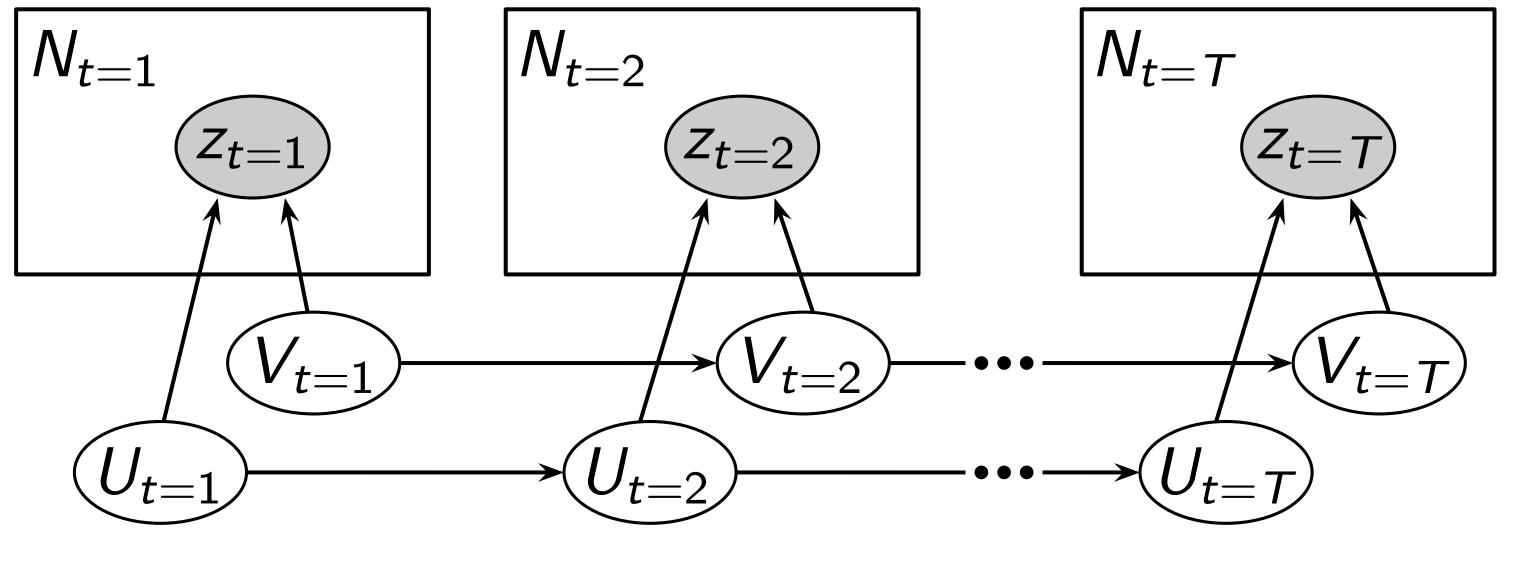
[Bamler & Mandt, ICML 2017]

static model



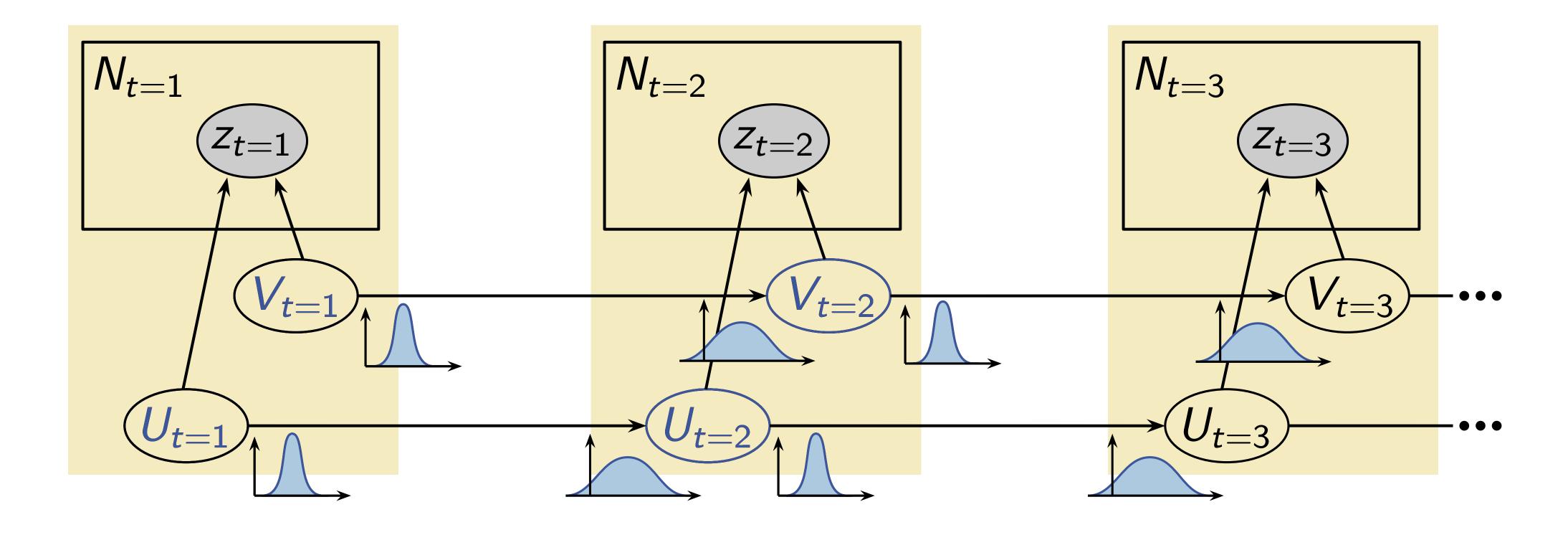
Dynamic Model





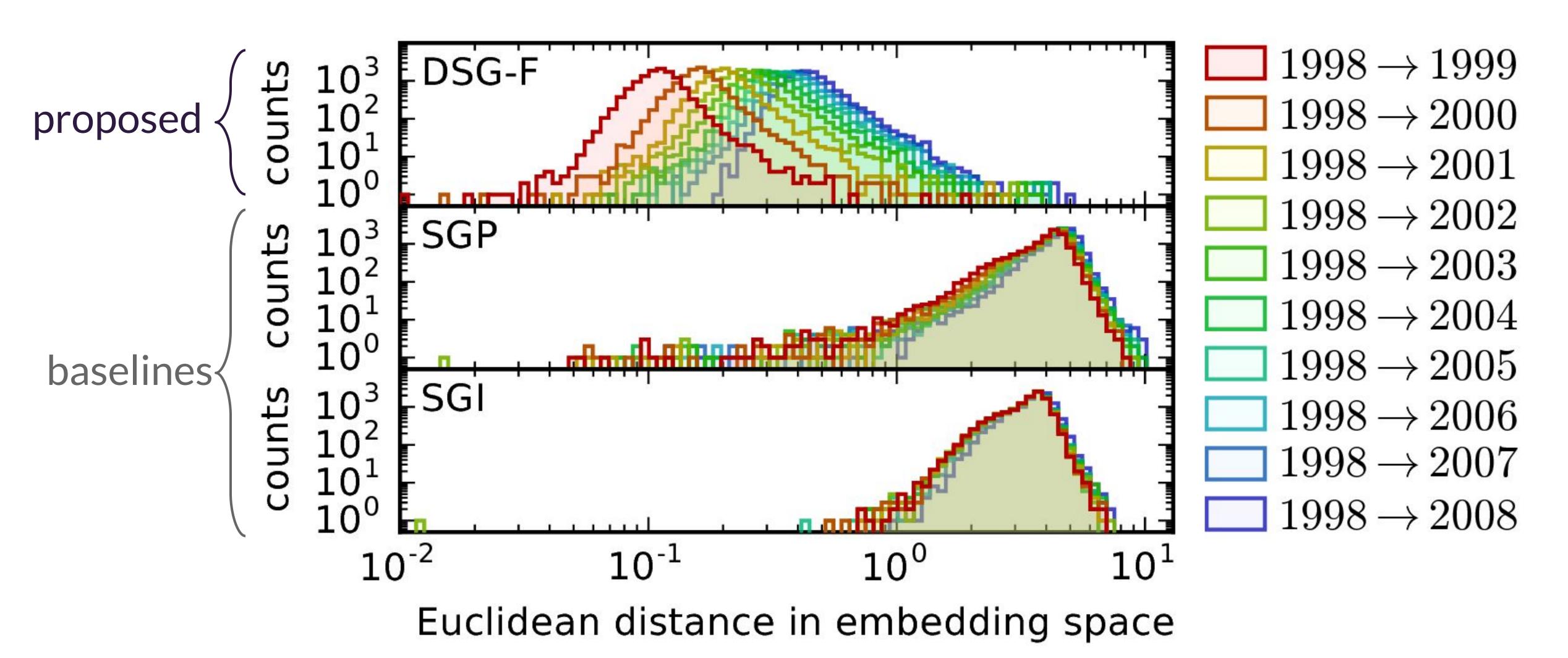
On-line Learning With Variational Inference

[see "Dynamic Word Embeddings", Bamler & Mandt, ICML 2017]



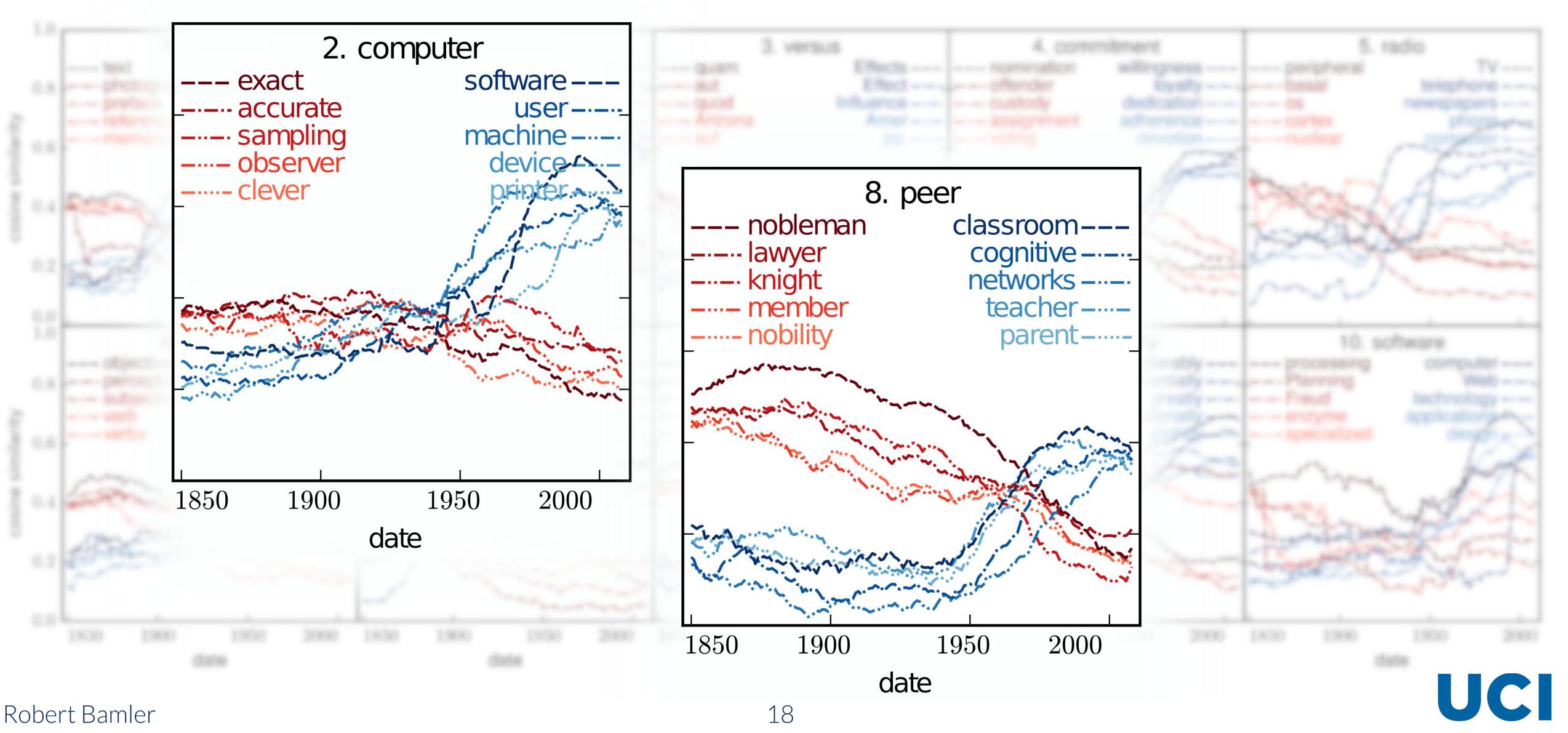
Results III: Smooth Trajectories in Embedding Space

(Training data: Google Books corpus [Michel et al., 2011])

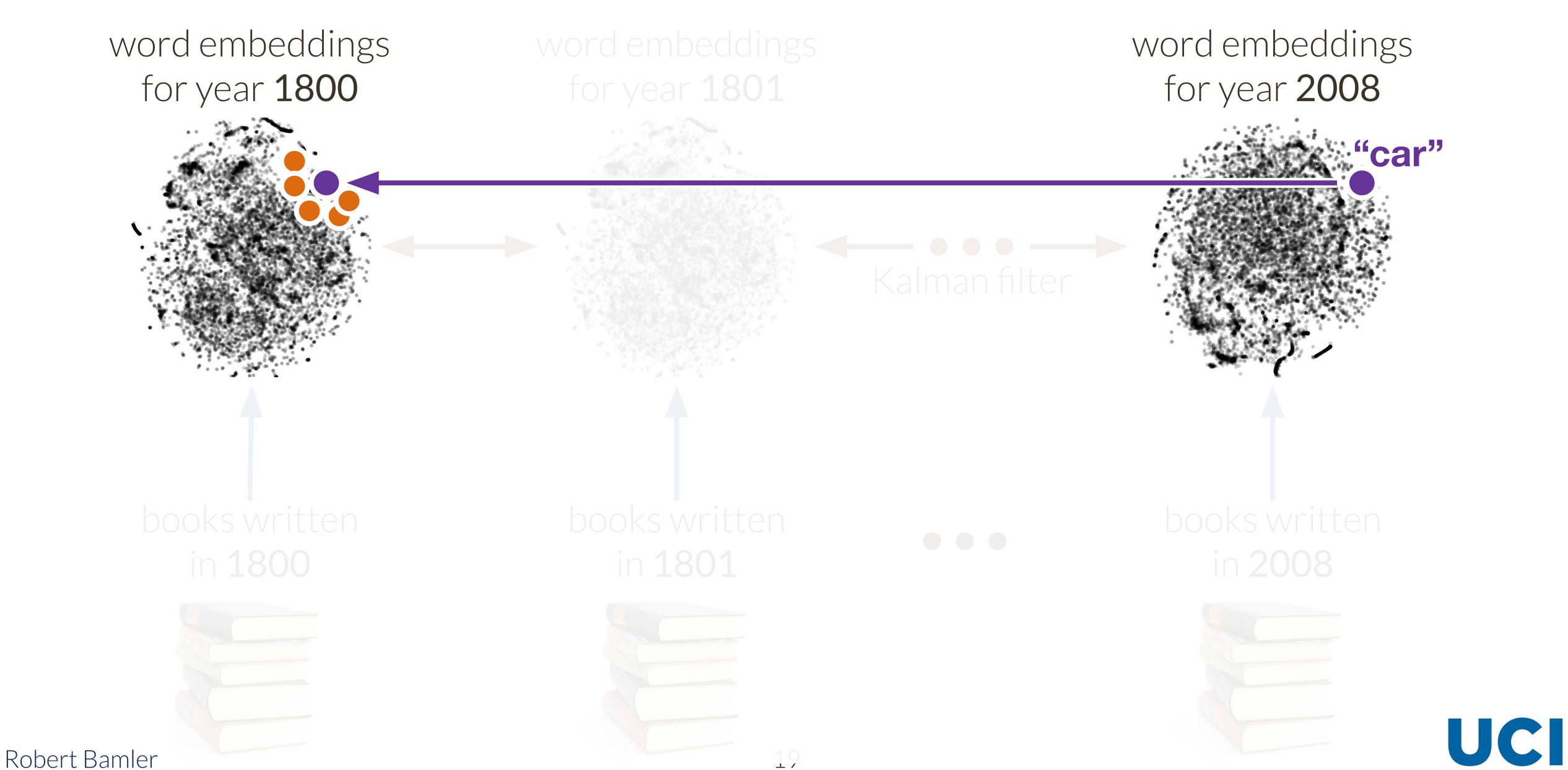


Results: Top 10 Most Mobile Words (1850→2008)

(Training data: Google Books corpus [Michel et al., 2011])



Time Travel



Results: Word Aging with Goldstone GD

[Bamler & Mandt, ICML 2018]

2008	1800				
car boat, saddle, canoe, wagon, box					
DNA	potassium, chemical, sodium, molecules, displacement				
tuberculosis	chronic, paralysis, irritation, disease, vomiting				

[Bamler, Salehi & Mandt, UAI 2019]

Task: Predict relations between entities (nodes) in a knowledge graph. Farnood Salehi

[Bamler, Salehi & Mandt, UAI 2019]

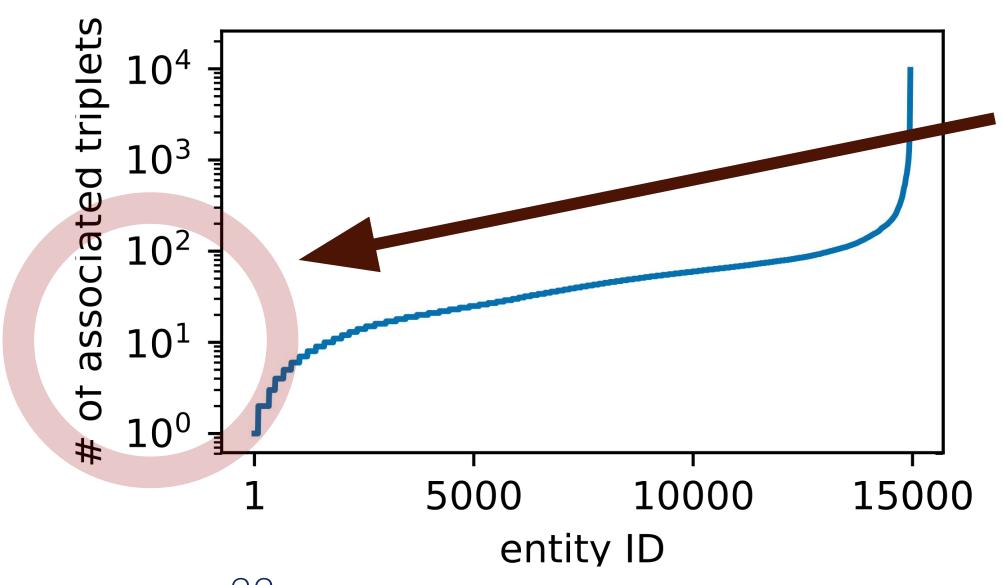
Task: Predict relations between entities (nodes) in a knowledge graph.

State of the Art:

Learn embeddings for entities and relation types.

Problem:

Highly sensitive to hyperparameters [Kadlec et al., 2017]



Reason:

Many entities are supported only by few data points.

[Bamler, Salehi & Mandt, UAI 2019]

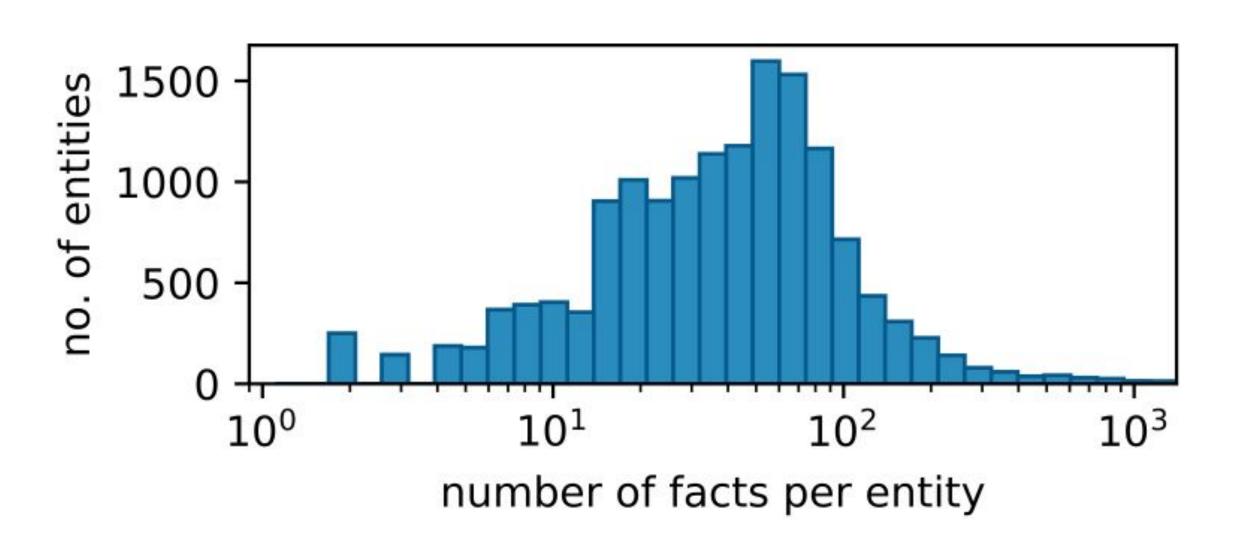
Task: Predict relations between entities (nodes) in a knowledge graph.

State of the Art:

Learn embeddings for entities and relation types.

Problem:

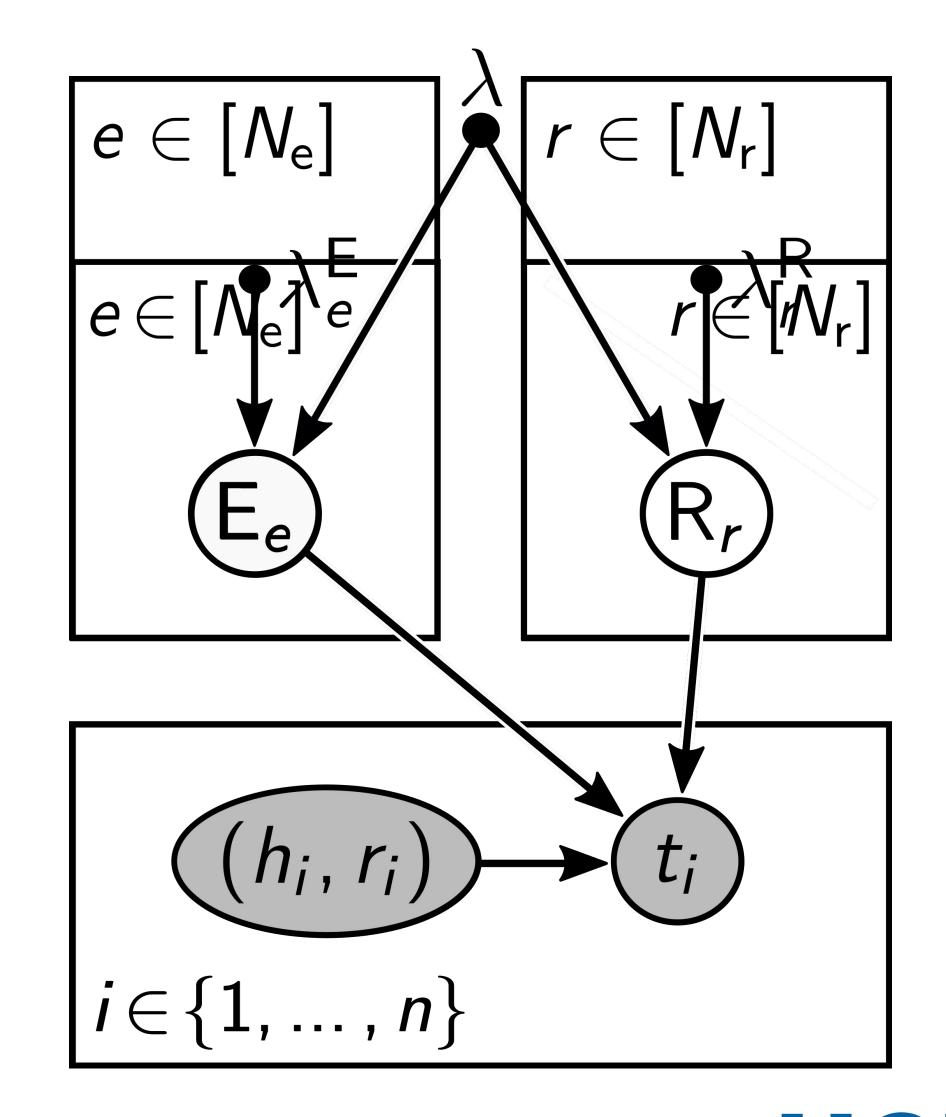
Highly sensitive to hyperparameters [Kadlec et al., 2017]



[Bamler, Salehi & Mandt, UAI 2019]

Our Solution:

- → Reinterpret existing models as **probabilistic generative models** of relational facts (**h**ead, **r**elation, **t**ail).
- → Introduce macroscopic number of *local* hyperparameters (> 10,000).
- → Tune hyperparameters efficiently with variational expectation maximization.



Results: Probabilistic Knowledge Graph Embeddings

[Bamler, Salehi & Mandt, UAI 2019]

Link prediction outperforms previous state of the art.

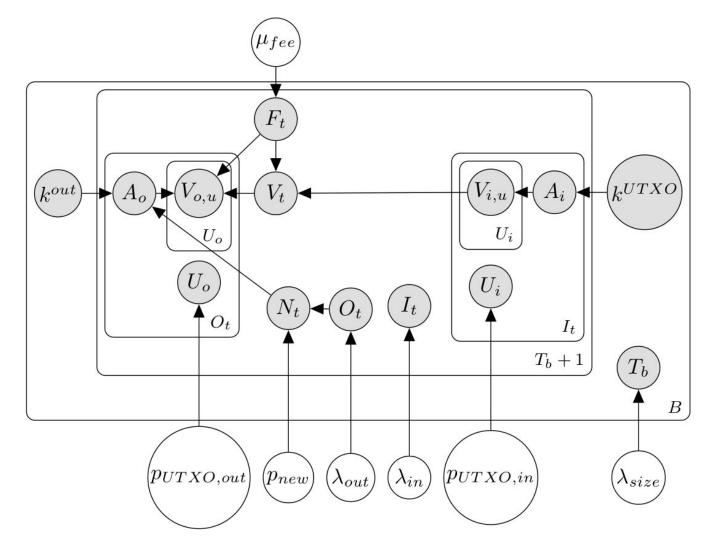
↓ model	\downarrow variant data set \rightarrow metric \rightarrow		N18RR Hits@10		N18 Hits@10		K-237 Hits@10		15K Hits@10
DistMult	Yang et al. [2015] (orig.)	_	_	0.83	0.942	_	_	0.35	0.577
DistMult	Kadlec et al. [2017]	_	_	0.790	0.950	_	_	0.837	0.904
DistMult	Dettmers et al. [2018]	0.43	0.49	0.822	0.936	0.241	0.419	0.654	0.824
DistMult	Ours (after variational EM)	0.455	0.544	0.911	0.961	0.357	0.548	0.841	0.914
ComplEx	Trouillon et al. [2016] (orig.)	_	_	0.941	0.947	_	_	0.692	0.840
ComplEx	Lacroix et al. [2018]*	0.478	0.569	0.952	0.963	0.364	0.555	0.857	0.909
ComplEx	Ours (after variational EM)	0.486	0.579	0.953	0.964	0.365	0.560	0.854	0.915

Discussion: Embedding the Blockchain

- Analogy to knowledge graphs: transaction ≈ relational fact; token ≈ relation
- ► Temporal component:
 - ≈ Dynamic Word Embeddings, but more ephemeral.
- ► Analysis (ideas):
 - semantic analysis of users & tokens using embeddings
 - predict transactions?

Action Items:

- □ Get a data set.
- Discuss existing literature.
- Come up with more concrete analysis questions (maybe as we look at the data).



[Jourdan et al., 2019]